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LETI’ER TO THE EDITOR 

Forest fires as critical phenomena 

Gary MacKay and Naeem Jan 
Physics Department, St Francis Xavier University, Antigonish, Nova Scotia, Canada, 
B2G 1CO 

Received 25 July 1984 

Abstract. A simple model is presented which describes the propagation of a fire in a densely 
packed forest from a centrally located buming tree. This model shares some features with 
random bond percolation from which it is distinct. We find that the critical probability, 
p E  is -4 for the triangular lattice, i.e. the onset of a spanning or ‘penetrating’ fire. In 
addition we find (i) a fractal dimensionality, d, of 1.75*0.05, (ii) the radius of gyration 
scales with time (a) as 0.75*0.02 and (iii) the number of burnt trees scales with time as 
d, - 1.33 i0.03 where d, is a metric exponent. More realistic models are presented for 
future consideration. 

Percolation theory has been applied to a wide range of physical phenomena ranging 
from the evolution of galaxies to the spread of disease in an orchard (e.g. see Deutscher 
et a1 1982, for a recent review of percolation and some areas of application). We shall 
in this letter consider the simplest model for a forest fire which is in fact, closely related 
to the General Epidemic process considered by Grassberger (1983) and Cardy (1983) 
and is also quite similar to a model proposed by Ritzenberg and Cohen (1984) to 
study the spread of electrical activity in the heart. The model of a forest fire analysed 
by Clavin et a1 (1983) may be considered as the high probability limit of this model 
on a random lattice of occupied trees. 

Forest fires are not uncommon in North America and due to their destructive 
properties they have been carefully monitored and a wealth of information is available 
(Davis 1959). A fire may be typified by the following properties; its rate of spread, 
direction of travel and its intensity. We consider here low intensity fires (roughly 
860 Kcal s-’ per metre of fire front) where from a geometrical standpoint, these fires 
may be considered ‘thin’ or two dimensional. Convection effects are minimal and the 
spread of the fire is a localised surface phenomenon. A high intensity or ‘blow-up’ 
fire (16 000-25 000 Kcal s-’ m-’) is a three-dimensional phenomenon where strong 
convection currents lead to surface winds directed to the buming centre and burning 
embers propagate vast distances via the hot convection currents to create new centres 
of fire. Here we have both surface (or nearest-neighbour propagation) and long range 
hopping (through the embers). 

The rate of spread of the fire is dependent on many constraints; adequate oxygen 
supply, wind velocity (these two factors lead to the faster spread of a fire in a direction 
opposite to the wind velocity than the case with no wind), topography (fires travel 
much faster up an incline and rarely down slope), age and type of trees (thick barks 
are more flame resistant) and most important, the recent rainfall. We shall consider 
a densely packed lattice (i.e. all the sites occupied by trees identical in terms of moisture 
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content, age, etc.) and the spread of the fire is a localised surface phenomenon, i.e. a 
burning tree is only able to ignite its nearest neighbours. The fire commences with the 
central site ablaze at t = 0 and a probability is assigned to the propagation of the fire 
to neighbouring ‘warm’ trees. The burning system leads to four categories of sites at 
any given time, t :  (a) sites with burnt trees, M ;  (b) sites with burning trees N (c); 
warm trees (unburnt trees that are nearest neighbours to burning trees) and (d) 
remaining sites, A Monte Carlo time step consists of the propagation of the fire from 
ignited or burning trees, category (b), to warm trees, category (c) with probability p. 
At the end of the time step all the previously burning trees are considered dead or 
burnt and the warm trees that were ignited are now the new burning centres which 
create in turn a new set of warm trees. This set of warm trees may include unignited 
warm trees from earlier time steps. The process is continued until there are no further 
ignited trees (referred to as ‘exhaustion’ by Clavin et a l )  or the fire reaches the edge 
of the lattice (‘penetration’). We note that an unburnt region surrounded by burnt or 
vacant sites cannot be ignited in this model. 

We have simulated the spread of the forest fire on a triangular lattice of size L X L 
(L up to a 1000) and for a wide range of probabilities. We find that for high probabilities, 
p P 0.5 the fire propagates as an expanding circle with very few unburnt trees and the 
number of ignited trees is proportional to the circumference of the circle. Lower values 
of p lead to a ramified cluster and for values of p less than -4 it is impossible to 
simulate a fire that penetrates or reaches the edge of the lattice. We expect that at p c  
the total number of burnt trees, M to scale as (Havlin 1984, Hong and Stanley 1983) 

M - td f  (1) 

where t is the number of Monte Carlo time steps and d, is related to the topological 
exponent recently introduced by Hong et a1 (HHHS) (1984) to describe the number of 
sites within a chemical distance. The chemical distance describes the burnt sites 
relationships to the origin of the fire, e.g. the burnt trees at t = 3 have a chemical 
distance of 3 etc. In addition we define the exponent 0 as 

R,-  t o  (2) 
where R,  is the radius of gyration of the burnt trees. The fractal dimensionality, dr 
of the cluster of burnt trees is 

M - R $  (3) 

dr= d,/  0. (4) 

where 

Figure 1 shows burnt clusters of trees for p > pc ,  p - p c ,  p < pc .  Figure 2 shows the 
number of burning trees, N as a function of time, for several values of p. For p > pc ,  
N increases linearly with time, whereas for p < p c ,  N increases initially but eventually 
falls to zero. At pc the number of burning trees increases from 1 at r = 0 and remains 
fairly constant from t = 200 to t = 500. Figure 3 shows several plots. (i) This is a plot 
of log M against log t for 5000 simulations of the forest fire on a 1000 x 1000 lattice. 
d, from this slope is 1.33 f 0.05. This value is close to the value of 1.44 k0.03 reported 
by HHHS from their investigations of a fire on a percolating backbone. Their system 
may be considered as a forest on the sites of the backbone formed by the incipient 
infinite cluster with all the other sites of the lattice empty. A fire is started at a central 
site and all the neighbours on the backbone at t = 1 will be ignited (i.e. p = 1). (ii) 
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Figure 1. Typical clusters are shown for ( a )  p (  =O.40)>pc, (b)  p (  = $ ) - p c  and ( c )  
p (  = 0.30) < pc. Only finite clusters are formed for p 4 pc .  Note that at p = 0.40 the cluster 
is fairly compact. The open circle (0) represents the origin of the fire in each case. 
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Figure 2. Shows the number of burning trees, N as 
a function of time, t for various values of p.  Values 
of p > pc indicate that the number of burning trees 
increases linearly with time ( X )  whereas the number 
of burning trees tend to zero for p less than pc (0). 
For p - pe  we find that the number of burning trees 
remain fairly constant (0). 
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Figure 3. The figure shows the variation of ( i )  radius 
of gyration, R, against time, 1 ;  (ii) number of burnt 
trees, M against time; (iii) radius of gyration, R, 
against mass of trees, M ;  represented by 0, x, 0, 
respectively. 
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This shows the variation of R, with time and B is 0.75f0.02. This value is distinct 
from that reported by HHHS, where B=0.87*0.02 for their model. (iii) This shows 
the variation of R, with A4 and from which we obtain a slope of 1.75 f 0.05 for the 
fractal dimensionality of the cluster of burnt trees which is in good agreement for the 
value 1.77 obtained through equation (4). 

A more extensive analysis of the model is in progress where we are investigating 
the effects of vacancies on pc as well as on the critical exponents. In addition, we 
would like to include the effects of wind velocity, terrain and to take into account 
different species of trees. 

In summary, we have introduced a model which is appropriate for the propagation 
of a low intensity fire. We find a critical probability for the triangular lattice o f f ,  a 
fractal dimensionality of 1.75 f 0.05, a metric dimensionality d, of 1.33 f 0.05 and an 
exponent B of 0.78 f 0.03. 

We thank D Stauffer, S Havlin, D Hong, H E Stanley, J Cardy, S Redner and A 
Ritzenberg for discussions and comments on various aspects of this work and special 
thanks for advanced reports of their work. This research was funded in part by the 
Natural Science and Engineering Research Council of Canada and by the St Francis 
Xavier University Council for Research. 
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